« October 2011 | Main | December 2011 »

November 21, 2011

Should Wikipedia accept advertising?

imageIt’s that time of year again. The nights are drawing in, snow is starting to fall in the mountains, our minds turn to thoughts of turkey and Christmas pudding, and familiar faces appear: Santa, Len and Bruno, and of course, Jimmy Wales.

If you are a user of Wikipedia (which, if you’re a user of the Internet, you almost certainly are), you’ll likely be familiar with Jimmy Wales, the founder of Wikipedia and head of the Wikimedia Foundation, the non-profit which runs the site. Each year Jimmy personally fronts a campaign to raise funds to cover the cost of running Wikipedia, which this year will amount to around $29m.

The most visible part of this campaign is the giant banner featuring Jimmy Wales’s face which appears at the top of every Wikipedia article at this time of year. This year the banner has caused some hilarity as the position of the picture of Jimmy just above the article title has provided endless comic potential (as above), but every year it becomes increasingly wearisome to have Jimmy’s mug staring out at you for around three months. Would it not be easier for all concerned if Wikipedia just carried some advertising?

Jimmy has gone on record as saying that he doesn’t believe that Wikipedia should be funded by advertising, and I understand his position. To parse/interpret his concerns, I believe he’s worried about the following:

  • Accepting advertising would compromise Wikipedia’s editorial independence from commercial interests
  • Ads would interfere with the user experience of Wikipedia and be intrusive
  • Wikipedia contributors would not want to contribute for free to Wikipedia if they knew it was accepting advertising

I’m biased, of course, since I work for Microsoft Advertising, but I believe that each of these concerns is manageable. Let’s take them one by one:

Concern 1: Ads would compromise Wikipedia’s independence

There are plenty of historical examples where a publication has been put in a difficult position when deciding what to publish because of relationships with large advertisers. Wikipedia certainly doesn’t want, for example, Nike complaining about the content of its Wikipedia entry. And the idea of Wikipedia starting to employ sales reps to hawk its inventory is a decidedly unedifying one.

But Wikipedia does not have to engage in direct sales, or even non-blind selling, to reach its financial goals with advertising. The site could make its inventory available on a blind ad network (or ideally multiple networks) so that it would be impossible for an advertiser to specifically buy ad space on Wikipedia. If an advertiser didn’t like their ads appearing on Wikipedia, most networks offer a site-specific opt out, but the overall impact of this to Wikipedia would be minimal – Wikipedia carries such a vast range of content that it has the most highly diversified content portfolio in the world – no single advertiser could exert any real leverage over it.

Concern 2: Ads would make Wikipedia suck

As has been noted elsewhere, there are plenty of horrible ads at large in the Internet – intrusive pop-ups, or horrible creative. It would certainly be a valid concern that Wikipedia would suddenly become loaded with distracting commercial messages. But according to the back-of-an-envelope calculations I’ve done, there is no need for Wikipedia to saturate itself with ads in order to pay the bills.

According to the excellent stats.wikimedia.org site, Wikipedia served almost exactly 15bn page views world-wide in October 2011 (around half of which were in English). Assuming no growth in that figure over 12 months, that’s around 180bn PVs per year. So to meet its funding requirements, Wikipedia would need to generate a $0.16 eCPM on those page views (assuming just one ad unit per page). That’s a pretty modest rate, especially on a site with as much rich content as Wikipedia. It would give the site a number of options in terms of ad placement strategy, such as:

  • Place a very low-impact, small text ad on every page
  • Place a somewhat larger/more impactful ad on a percentage of pages on a rotation, and leave other pages ad free
  • Place ads on certain types of pages, leaving others always ad free (such as pages about people or companies, or pages in a particular language/geo)
  • Deploy a mix of units across different types of page, or in rotation

This also assumes that Wikimedia needs to raise all its funds every year from advertising, which it may not need to – though once the site accepted advertising, it would definitely become more difficult (though perhaps not impossible) to raise donations.

To preserve the user experience, I would definitely recommend just running text ads, which could be placed relatively unobtrusively. Sites running text-based contextual ads (such as those from Google AdSense or Microsoft adCenter) can usually expect to get at least around $0.30 eCPM, so there would be some headroom.

I would also recommend that Wikipedia not run targeted ads – or at least, only work with networks that do not sell user data to third parties. It could cause significant backlash if it became felt that Wikipedia was effectively selling data about its users’ browsing habits to advertisers for a fast buck.

Concern 3: Ads would make contributors flee

I can speak to this concern less authoritatively, since I am not that familiar with the world of Wikipedia contribution, but so long as Wikimedia made it clear that it was remaining a non-profit organization, and continued to operate in a thrifty fashion to cover its costs, the initial outrage of Wikipedia contributors could be managed. After all, plenty of other open-source projects that rely on unpaid contributors do provide the foundations for commercial activities, Linux being the best example.

In any case, in its deliberations about balancing the needs of its contributors with its need to pay the bills, Wikimedia will need to face some hard questions: Will it always be able to cover its costs through donations? Does the current level of investment in infrastructure represent an acceptable level of risk for a site that serves so many users? Is it acceptable to rely on unpaid contributors indefinitely? If Wikipedia ran out of cash or went down altogether, the righteous indignation of its contributors may not count for very much.

Apart from advertising and donations, the only other way that Wikipedia could pay the bills would be by creating paid-for services – for example, a research service. But would the unpaid Wikipedia contributors really be happier with this outcome than with advertising? It would effectively amount to selling the content that they’d authored for free. At least with advertising, it’s the user that is the product, not the content. So long as Wikipedia can maintain editorial independence and retain a good user experience, advertising feels like the better option to me.

del.icio.usdel.icio.us diggDigg RedditReddit StumbleUponStumbleUpon

November 09, 2011

Building the Perfect Display Ad Performance Dashboard, Part I – creating a measurement framework

dashboard-warning-lightsThere is no shortage of pontification available about how to measure your online marketing campaigns: how to integrate social media measurement, landing page optimization, ensuring your site has the right feng shui to deliver optimal conversions, etc. But there is very little writing about the other side of the coin: if you’re the one selling the advertising, on your site, or blog, or whatever, how do you understand and then maximize the revenue that your site earns?

As I’ve covered previously in my Online Advertising 101 series, publishers have a number of tools and techniques available to manage the price that their online ad inventory is sold for. But the use of those tools is guided by data and metrics. And it’s the generation and analysis of this data that is the focus of this series of posts.

In this series, I’ll unpack the key data components that you will need to pull together to create a dashboard that will give you meaningful, actionable information about how your site is generating money – or monetizing, to use the jargon.

We’ll start by taking a high-level look at a framework for analyzing a site’s (or network’s) monetization performance. In subsequent posts, we’ll drill into the topics that we touch on briefly here.

 

Getting the measure of the business

Ultimately, for any business, revenue (or strictly speaking, income or profit) is king. If you’re not generating revenue, you can’t pay the bills (despite what trendy start-ups will tell you). But anyone running a business needs a bit more detail to make decisions that will drive increased revenue.

In the ad-supported publishing business, these decisions fall into a couple of broad buckets:

  • How to create more (or more appealing) supply of sellable advertising inventory
  • How to monetize the supply more effectively – either by selling more of it, or selling it for a better price, or both

Another way of thinking about these decisions is in a supply/demand framework that is common to almost all businesses: If your product is selling like hot cakes and you can’t mint enough to meet demand, you have a supply problem, and you need to focus on creating more supply. If, on the other hand, you have a lot of unsold stock sitting around in warehouses (real or virtual), you have a demand problem, and you need to think about how to make your products more compelling, or your sales force more effective, or both.

Online publishers usually suffer from both problems at the same time: Part of their inventory supply will be in high demand, and the business will be supply-constrained (it is not easy to mint new ad impressions the way a widget manufacturer can stamp out new widgets). Other parts of the inventory, on the other hand, will be hard to shift, and the business will be demand-constrained – and unlike widgets, unsold ad inventory goes poof! when the clock strikes midnight.

So analysis of an online ad business needs to be based on the following key measures:

  • How much inventory was available to sell (the Supply)
  • How much inventory was actually sold (the Volume Sold)
  • How much the inventory was actually sold for (the Rate)

It’s ultimately these measures (and a few others that can be derived from them) that will tell you whether you’re succeeding or failing in your efforts to monetize your site. But like any reasonably complex business (and online advertising is, at the very least, unreasonably complex), it’s really how you segment the analysis that counts in terms of making decisions.

 

What did we sell, and how did we sell it?

Most businesses would be doing a pretty poor job of analysis if they couldn’t look at business performance broken out by the products they sell. A grocery chain that didn’t know if it was selling more grapes or grape-nuts would not last very long. Online advertising is no exception – in fact, quite the opposite. Because online ad inventory can be packaged so flexibly, it’s essential to answer the question “What did we sell?” in a variety of ways, such as:

  • What site areas (or sub-areas) were sold
  • What audience/targeting segments were sold
  • What day-parts were sold
  • What ad unit sizes were sold
  • What rich media types were sold

The online ad sales business also has the unusual property that the same supply can (and is) sold through multiple channels at different price points. So it is very important to segment the business based on how the supply was sold, such as:

  • Direct vs indirect (e.g. via a network or exchange)
  • Reserved vs remnant/discretionary

Depending on the kind of site or network you’re analyzing, different aspects of these what and how dimensions will be more important. For example, if you’re running a site with lots of high-quality editorial content, analyzing sales by content area/topic will be very important; on the other hand, if the site is a community site with lots of undifferentiated content but a loyal user base, audience segments will be more relevant.

 

Bringing it together – the framework

I don’t know about you, but since I am a visual person to start with, and have spent most of the last ten years looking at spreadsheets or data tables of one sort or another, when I think of combining the components that I’ve described above, I think of a table that looks a bit like the following:

image

This table is really just a visual way of remembering the differences between the measures that we’re interested in (volume, rate etc) and the dimensions that we want to break things out by (the “what” and “how” detail). If you don’t spend as much of your time talking to people about data cubes as I do, these terms may be a little unfamiliar to you, which is why I’m formally introducing them here. (As an aside, I have found that if you authoritatively bandy about terms like “dimensionality” when talking about data, you come across as very wise-sounding.)

In the next posts in this series, I shall dig into these measures and dimensions (and others) in more detail, to allow us to populate the framework above with real numbers. We’ll also be looking at how you can tune the scope of your analysis to ensure that

For now, here’s an example of the kinds of questions that you would be able to answer if you looked at premium vs non-premium ad units as the “what” dimension, and direct vs indirect as the “how” dimension:

image

 

As this series progresses, I’d love to know what you think of it, as well as topics that you would like me to focus on. So please make use of the comments box below.

del.icio.usdel.icio.us diggDigg RedditReddit StumbleUponStumbleUpon

About

About me

Disclaimer

Subscribe

Enter your email address:

Delivered by FeedBurner

Subscribe